Also found in: Medical, Financial.
CRLF1Cytokine Receptor-Like Factor 1
Copyright 1988-2018, All rights reserved.
References in periodicals archive ?
Several proteins released more abundantly or exclusively by ASCs, namely AXL, CCL2, CLU, CRLF1, LGMN, and PCSK9, were found to be significantly associated with the regulation of neuronal death and apoptosis.
Using reverse transcription--(RT-) PCR arrays, they showed that human bone marrow MSC-derived EVs contain mRNAs involved in transcription (e.g., CLOCK, IRF6, and LHX6), immune regulation (e.g., CRLF1, IL1RN, and MT1X), cell cycle regulation (e.g., SENP2, RBL1, and CDC14B), DNA/RNA binding (e.g., HMGN4, TOPORS, and ESF1), actin cytoskeleton regulation (e.g., DDN, MSN, and CTNNA1), and extracellular matrix remodeling (e.g., COL4A2, IBSP) as well as cell differentiation into neuron (e.g., RAX2, OR11H12), bone (e.g., NIN, BMP15), endothelium/epithelium (e.g., MAGED2, CEACAM5), and hematopoietin (e.g., HK3, EPX).
It was demonstrated that the mRNAs present in EVs are associated with the mesenchymal phenotype and with several cell functions related to the control of cell differentiation (RAX2, OR11H12, OR2M3, DDN, and GRIN3A), transcription (CLOCK, IRF6, RAX2, TCFP2, and BCL6B), proliferation (SENP2, RBL1, CDC14B, and S100A13), cytoskeleton (DDN, MSN, and CTNNA1), metabolism (ADAM15, FUT3, ADM2, LTA4H, BDH2, and RAB5A) [47], and cell immune regulation (CRLF1, IL1RN, and MT1X) (Table 2).