MIS

(redirected from Maximal independent set)
Also found in: Encyclopedia, Wikipedia.
AcronymDefinition
MISManagement Information System(s)
MISMichigan International Speedway
MISMonth(s) in Service
MISMajor Investment Study
MISMusic in the Schools (educational program)
MISMismatch
MISMinimally Invasive Surgery
MISMaster of International Studies
MISMaster of Interdisciplinary Studies (education)
MISMilitary Intelligence Services (US Navy)
MISMexican Institute of Sound (band)
MISMounting Interface Standard (Video Electronics Standards Association)
MISMedical Information Services (various organizations)
MISMake It So
MISMinistry for Infrastructure (Norway)
MISMedical Insurance Specialist (certification program)
MISMetal-Insulator-Semiconductor
MISMobile Information Server (Microsoft)
MISMultimedia Information Systems
MISMedical Insurance Scheme (India)
MISManagement Information Software (various organizations)
MISMicrosoft Information Store
MISMobile Information Server
MISMessage Identification Service
MISMobile Internet Server
MISMajor Information Systems
MISMultimedia Information Sources
MISManagement Information System
MISMarket Information System
MISMeares-Irlen Syndrome (perception disorder)
MISMullerian Inhibiting Substance (endocrinology)
MISMarketing Information System
MISMonthly Income Scheme
MISManaged Internet Service (AT&T)
MISMicrowave Imager/Sounder (various organizations)
MISMadison International Speedway (Wisconsin)
MISMedical Information System
MISManagement Information Science(s)
MISMarubeni-Itochu Steel (various locations)
MISMade in Sweden
MISMunich International School (Munich, Germany)
MISMobile Internet Solutions
MISMicroscope Imaging Station (San Francisco, CA)
MISMobile Information Systems
MISMakuhari International School (Japan)
MISMonitoring and Information System (distributed system)
MISMedical Informatics Section (est. 1988)
MISMolokai Irrigation System (Hawaii)
MISMiniature Sheet (philately)
MISMarine Information System
MISMultiple Income Solutions
MISMalaria Indicator Survey (health demographics)
MISMaximum Impact Simulcast
MISModified in Situ
MISMutual Insurance Services (various companies)
MISMaximal Independent Set
MISMastering Interface System
MISMarket Insight Service (451 Research Group)
MISMulavira Interior Systems (Chennai, India)
MISMineral Industry Survey
MISMasjed Soleiman (Iran city)
MISMinistry of Information Society (various locations)
MISMaterials Information Service
MISMis-Information System :-)
MISMine Issuing Ship (US Navy)
MISManagement Information Statistics
MISMyanmar Incubation Service Co., Ltd.
MISMeteorological Impact Statement
MISMoody Institute of Science
MISMu Iota Sigma (Honor Society)
MISMarketing Intelligence Systems
MISMarine Information Service (Sea Grant Program)
MISModular Insertion Stage
MISManufacturers, Importers and Suppliers
MISMaintenance Interface, System (Telcom Solutions)
MISMothers of Incarcerated Sons
MISMultimedia Information Service
MISMineral-Industry Survey
MISMarket Information Solutions (data collection; various locations)
MISMission Intelligence Segment
MISModal Interval Simulator
MISMotor Index Score
MISMichigan Integrated Solutions, Inc. (Ann Arbor, Michigan)
MISMirror Image Acquisitions
MISMaterial Inspection Service
MISMicrocomputer Information Services
MISMetal Insulation Silicon
MISMedia Information Science
MISManaging Infertile Soils
MISMission Implementation Specification (NASA)
MISMultipoint Indicate Secondary-Status
MISMicrowave Incinerator System
MISMidwest Institute of Sexology
MISManual Isolation Switch
MISMethods of Instruction Squadron
MISMulti-Lingual Interview System
MISMetrology Information Service
MISMechanized Interface Specification (Telcordia)
MISAl-Manhal International School (Jubaiha, Jordan)
References in periodicals archive ?
Proof: We prove that any (inclusionwise) maximal independent set has size [square root of n + 1 - 1].
Recall that, by Theorem 3, the size of a maximal independent set is at least [square root of n + 1] - 1.
For any unit disk graph G, the cardinality of a maximal independent set is at most 3.
n]) time by combining a result due to Moon and Moser, who showed in 1965 that the number of maximal independent sets of a graph is upper bounded by [3.
For example, g(n) bounds the time complexity of various algorithms that output all maximal independent sets (Bron and Kerbosch, 1973; Lawler et al.
Full browser ?