# N-T

Acronym | Definition |
---|---|

N-T | Nasal-to-Temporal stimulation (ophthalmology) |

Want to thank TFD for its existence? Tell a friend about us, add a link to this page, or visit the webmaster's page for free fun content.

Link to this page:

https://acronyms.thefreedictionary.com/N-T

our app

- Dictionary
- Thesaurus
- Medical

Dictionary - Legal

Dictionary - Financial

Dictionary - Acronyms
- Idioms
- Encyclopedia
- Wikipedia

Encyclopedia

Acronym | Definition |
---|---|

N-T | Nasal-to-Temporal stimulation (ophthalmology) |

Want to thank TFD for its existence? Tell a friend about us, add a link to this page, or visit the webmaster's page for free fun content.

Link to this page:

These results show predicting ability of SSFE finite element based on N-T's model.

[C.sup.0] finite element discretization of the first-order N-T model applied the PPR method to solve problems of gradient discontinuities across edges of triangular elements during interpolation.

Equation (18) shows that the total deformation energy due to N-T model contains additional terms: coupled membrane and Gaussian bending ([E.sub.eQ], [E.sub.Qe]) and Gaussian deformation energy [E.sub.QQ].

As we mentioned above, when the thickness ratio 2[chi] is greater than 0.098, this additional energy ([E.sub.eQ], [E.sub.Qe]) influences global deformation energy and shows the difference between N-T and R-M models applied to the spherical thick shells.

The investigation of the variation of the thickness ratio h/R for certain values 0 < 2[chi] < 0.099 proves that the Kirchhoff-Love, Reissner-Mindlin, and N-T classical models have the same contribution of total deformation energy.

The N-T model handles spherical thin and thick shell properly because it clearly shows how the change of the third fundamental form enhances the total deformation energy when the ratio [chi] becomes greater.

We have investigated in this framework the influence of the third fundamental form proportional to [chi square] (with [chi square] = [(h/2R).sup.2]) included in N-T's model of elastic thick shells.

In the contrary, our finite element (CSFE3) is based on N-T's theoretical model of thick shells which is deduced from [[epsilon].sub.[alpha]3](u) = 0 obtained at limits analysis of 3-dimensional shell equations [24].

The successive scaling over the benchmark structure has presented divergence of displacements results as h/R increases for K-L kinematic model of shells and that of N-T. This is due to the influence of the additional terms found in N-T's shell theory in the deformation energy of the structure.

For Reissner-Mindlin and K-L classical model of shells, the global stiffness matrix [K.sup.R-M.sub.G] contains only [K.sub.m] and [K.sub.b] while in N-T's model, the global stiffness matrix [K.sup.N-T.sub.G] contains additional terms ([K.sub.mg] + [K.sub.gm] + [K.sub.g]) to those found in [K.sup.R-M.sub.G].

N-T's theoretical approach for the modelling of the displacement and stains in cylindrical structures have been examined and compared with that of KL for the case of self-weight loading cylindrical roof.

The comparison has revealed that N-T's shell theory is suitable for the analysis of cylindrical thin and thick structures from the perspectives of both accuracy and simplicity.

- ▲
- N-ROSS
- N-S
- N-S
- N-S
- N-S
- N-S
- N-S
- N-S
- N-SAM
- N-SAR Form
- N-SAR Forms
- N-SAS
- N-scan
- N-SCLT
- N-scope
- N-sec-butyl-4-tert-butyl-2,6-dinitroaniline
- N-Shc
- N-Sider
- N-SLOCSC
- N-SOLV
- N-SP
- N-SPECT
- N-sphere
- N-sphere
- N-SSA
- N-SSATS
- n-standard router
- N-Substituted Glycine
- N-Succinimidyl-3-
- N-succinyladenylic acid
- N-T
- N-TAF1
- N-telopeptide
- N-Telopeptide Cross-Links
- N-TEN
- N-terminal
- N-Terminal Acetyltransferase
- N-Terminal Domain
- N-Terminal Nucleophile
- N-Terminal Protease
- N-Terminal Subdomain
- N-terminus
- N-terminus
- N-Tert-Butyl Hydroxylamine
- N-Tert-Butyl-2-Benzothiazole Sulfenamide
- n-tetracosanoic acid
- n-tetradecane
- N-TFS
- n-th
- N-Th Degree Truncated Polynomial Ring
- N-th root
- N-tier
- N-tier architecture
- N-tilde
- N-tilde
- N-tilde
- N-tilde
- N-TIMS
- N-TIS
- n-TNF
- N-torus
- ▼