On this space (C[0, T], [w.sub.[alpha],[beta];[phi]]), the author [10] introduced an Ito type integral [I.sub.[alpha],[beta]] and a generalized PWZ integral with their relation.
When the generalized PWZ integral on C[0, T] is defined, one of difficulties encountered is the existence of a complete orthonormal basis of functions in [L.sup.2.sub.[alpha],[beta]][0, T] such that these functions are of bounded variation and orthogonal in [L.sup.2.sub.0,[beta]][0, T], where [L.sup.2.sub.0,[beta]][0, T] and [L.sup.2.sub.[alpha],[beta]][0, T] are the [L.sup.2]-spaces with respect to the Lebesgue-Stieltjes measures induced by [alpha] and [beta] [10].
Vz; 80,10 (h)abundantiori B PW ] (h)abundantiore Vz; 80,14 quarum B
PWz ] quorum V, 82,11 Iammonam B PW ] Iamona Vz; 82,24 nequivit B
PWz ] requievit V; 112, 1 appellantur B Pz ] dicuntur W appellabantur V; 112,6 idem B
PWz ] idem V; 112,8 retractus B
PWz ] retractatus V; 114,1 coriandri B PWC ] coliandri VSAG; 114,15 sponsioni B PWGC ] sponsionis VSA; 114,16 videbatur B
PWz ] videbantur V, 116, 16 domum B
PWz ] demum V; 116,21 novos B
PWz ] novas V, 118,5 delibutam B PW ] delibatam Vz; 1 18,8-9 rep(p)ererunt B
PWz ] reperierunt V; 118,12 die B ] om.